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Langevin Equation Approach to Granular Flow in a 
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The gravity-driven flow of granular material through a rough, narrow vertical 
pipe is described using the Langevin equation formalism. Above a critical par- 
ticle density the homogeneous flow becomes unstable with respect to short-wave 
length perturbations. In correspondence with experimental observations, we find 
clogging and density waves in the flowing material. 
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Granular  materials show complex and sometimes unexpected behavior in 
many situations and therefore have attracted much scientific interest (e.g., 
refs. 1-3). When granular material flows through a narrow vertical pipe 
one observes recurrent clogging and density waves. 14-61 This effect is well 
known to physicists and engineers; usually it is undesirable and causes 
technological problems, e.g., in chemical engineering. Density waves play a 
major role in the behavior of granular materials and have been investigated 
by many authors using various methods: Using molecular dynamics, 
Ristow and Herrmann ~7~ reproduced density fluctuations in an outflowing 
hopper which had been previously observed experimentally (e.g., ref. 8). 
Baxter and Behringer 19~ simulated the flow with cellular automata.  Peng 
and Herrmann I"~ studied a lattice gas automaton ~t~ for the flow of 
granular material. Using phenomenologically plausible rules for the inter- 
action of particles and of particles with the wall, they reproduced density 
fluctuations whose spectrum obeys a power law. Lee and Leibig I ~-~ applied 
the kinetic wave approach ~3~ to the flow of granular particles through a 
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pipe. They treated initial random density fluctuations as a set of distinct 
homogeneous density regions and considered the motion of the interfaces 
between them. They showed that the evolution of such a simple model 
leads to the formation of clusters with high-density contrast. 

The aim of the present paper is to provide a one-dimensional model for 
the gravity-driven flow of granular material in a vertical narrow pipe using 
the Langevin-equation approach of stochastic forces. Such an approach was 
successfully used by Mehta et al. ~ ~4~ to describe the relaxation of a granular 
pile subjected to vibration. In our description we do not consider the inter- 
action of the sand with another medium such as air. Although it has been 
stated that air has major influence on the clogging behavior (e.g., ref. 6), we 
will show that our model is able to reproduce qualitatively the experimental 
observations.~4.5~ To our knowledge there are no experimental data which 
describe the flow of sand in an evacuated pipe. Starting from the Langevin 
formalism, we derive an expression for the grain density. We discuss the 
instability of the homogeneous flow in the hydrodynamic approximation and 
provide critical values for the occurrence of clogging and density waves. 

When sand flows through a narrow pipe we assume that there is a 
permanent random interaction of the sand particles with the wall of the 
pipe. The equations of motion for a single particle subjected to gravity g in 
the positive x direction which does not interact with other particles in the 
low-density regime read 

-~i~'Di (la) 

m~i = rag-- ~'vi + ~ ~i( t) ( lb)  

The friction 7' and the Langevin fluctuation term are effective forces result- 
ing from the interaction of the single grain with the wall. For the stochastic 
force we assume Gaussian white noise I-(~i(t)~j(t+ T ) ) = 6 ~ 6 ( T ) ] .  We 
assume that during its motion through the pipe the particle impacts the 
wall independently at different places. This behavior is described as inde- 
pendent impacts in time. Hence, after relaxation time m/), the velocity of 
the particle obeys a Maxwellian distribution with mean v~ mg/7. 

Besides the interaction of the grains with the wall, the particle-particle 
interaction has to be considered. Here we apply the collision integral 
proposed by Prigogine and Hermann. ~15~2 After a collision the faster par- 
ticle i adopts the velocity of the slower one j, 

0 - - - ~  0 ---~ ~ O O  ~ *  

2 Here the collision integral was intended to model vehicular traMc. It has been pointed out 
by several authors  le.g., refs. 26 and 51 that traffic flow on one-lane highways reveals striking 
similarities to granular Ilow in a pipe. 
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The proposed mechanism does not conserve momentum. Since the pipe 
explicitly does not belong to the system described by Eqs. (1) we assume 
that momentum is balanced via inelastic collisions with the wall. 

With the mean values for the particle velocity u(x, t), density n(x, t), 
and granular temperature T(x, t) at position x at time t 

n(x, t) = P(x, v, t) dv (2a) 

i r-,- = 1 vP(x, v, t) dv (2b) u(x, t) n(x, t) _ -~ 

m [V--tt(X, t ) ]  2 P(x, v, t) dv (2c)  T(x, t) kun(x ,  t) _-~ 

we write the Boltzmann equation for the one-particle probability density 
P(x, v, t) 

aP+O( ~[( r ) I e~,a-'P 
- ~  ~ v P ) +  g - - - - v  P 117 11"12 ~D 2 

= C f  P ( x , v , t ) P ( x , v ' , t ) ( v ' - v ) d v '  

= C P n ( u -  v) (3) 

The effective cross section C is a complex function of the pipe geometry 
and the properties of the particles which has to be determined experimen- 
tally. Since we do not investigate the influence of the properties of the pipe 
and the grain material on the flow characteristics, we may treat this value 
as a constant. 

Equation (3) has the stationary solution 

o / m \ ' /2 I rn ] 
P (v)=~27t~--~TO) n~ 2kuTO(V-U~  (4a) 

u ~ = (rag -- Ckn T~ ~ y - t  (4b) 

T~ = ek ff I (4c) 

The homogeneous flux through the pipe 

jO = 110/,/0 170(I~__ g CkBT~ ) = n o (5) 
\ )' y 
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therefore reveals two regimes: a low-density regime with high particle 
velocity where only very few collisions occur, and a high-density regime 
with low particle velocity caused by dissipative impacts of particles. 

With the assumption of local equilibrium we insert the solution (4a) 
in (3), 

OP O + 3  (F(n, r )  Y v e m2 0 (6) 
-O-t+ Ox (vP) Ov \ m m " c~v 2 

The acceleration due to gravity has to be replaced by the self consistent 
local force F(n, T) acting on the particles at a given location x and a given 
time t, 

F(n, T) = r a g -  CkB T(x , t) n(x, t) (7) 

Inserting in (la), we find the Langevin equation for the motion of particles 
which are subjected to gravity and impacts of other grains 

.~; = v; (8a)  

mCi = - - )%+ F(n(xi, t), T(x;, t)) + ~ ~i(t) (8b) 

in correspondence with Eq. (6). Hence, Eqs. (8) describe the motion of a 
single particle affected by the fields n(x, t) and T(x, t). 

We derive the hydrodynamic equations from Eq. (6): 

On O 

Ou Ou F(n, T) Y u k B O 
g i  + - - - . m m --~nn-~x (nT) 

(9a) 

(9b) 

On 1 0 ea2n  (10) 
-~ + ~~.x r(  n, T~ - y Ox2 

The first two terms on the rhs of the heat balance equation (9c) 
describe the heat exchange between the granular material and the wall, 
whereas the last term leads to an effective volume viscosity. We recall that 
our model is one dimensional, hence the viscosity is an effective value 
which accounts for the energy loss due to impact of particles. In the 
approximation of rapid temperature and velocity relaxation for the high- 
damping limit (y ~ o~), Eqs. (9) reduce to the Burgers equation 

2~y 8u O T O T 2 y T + n-~B -- 2 T -~x 
u G =  - ,-; (9c) 
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Fig. 1. The critical density n ~ over the mode number i of a perturbation. The homogeneous 
solution is sensitive in particular with respect to short-length perturbations. The parameters 
are m = 7 . 4 •  10-7kg, T = 7 x  10-r r . = 2 x  10 - s  N m, C = 6 . 4 •  10 -3, and 
g = 9.81 m/sec". For different parameters the curve changes: however, its qualitative shape 
remains conserved. 

In this limit (10) does not have self-sustained inhomogeneous solutions. 1~6} 
For finite damping, however, as shown below, the homogeneous solution 
n~ ", T ~ of Eqs. (9) becomes unstable when the average density 
approaches a critical value nCL ~17~3 

We have shown that there is a homogeneous solution (4a) for a given 
homogeneous density n ~ Now we want to discuss the stability ~s} of the 
hydrodynamic equations (9) with respect to a wavelike perturbation 

6n~6u~6T~exp(-~t+ikx), k=2zd/L (i=___1,+2,...) (11) 

in linear approximation, which leads to an eigenvalue problem for ~(k). 
(Because of the assumed periodic boundary conditions the wavenumber k 
is discrete.) For density n > n ~r fluctuations can grow and the homogeneous 
state is unstable, Re[~(k)] <0.  Figure 1 shows the critical density over 
the mode number i. Obviously in particular short-length perturbations 
destabilize the homogeneous flow. This stands in strong contrast to results 
found for hydrodynamic formulations of vehicular traffic I~s'~9"-'~ and 
granular flows, ~2~ where the long-range fluctuations are the critical ones. 
Our results are not surprising if one imagines that a local large gradient of 

In the context ot" clustering instabilities in dissipative gases the authors argued similarly: 
when the pressure in a dense region decreases due to dissipation, the resulting pressure 
gradient leads to further increase of the density, which finally results in a granular cluster. 
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the velocities will lead to a high collision rate at this place. For sufficiently 
high density this process leads to clusters with high local density and small 
average velocity. 

For large wave numbers we get a low limiting critical density given by 

7 7 7 1 
lim nOr(k) - - (12) 

,,-, . . . .  3 x /~ x / ~  C 3 x /3  L , C  

where Ln = w / ~ / 7  is the relaxation length, i.e., the distance after which the 
information of an impact the particle has undergone is damped out. It can 
be considered to be the length scale which characterizes our granular 
system and its critical behavior. In contrast, the critical behavior of the 
traffic flow models proposed in refs. 15, 19, and 20 depends on the length 
L of the entire (periodic) system, too, since the critical fluctuations in these 
systems are long-range ones. 

To check the analytic results, the discretized Langevin equations 

xi( t  + At) = xi(t) + vi(t) At (13a) 

vi(t + At) = v~(t) + (F(n(x~, t), T(x~, t)) 7v,(t)'] At + (2e7 At) In 
GRND 

\ m m / m 
(13b) 

have been solved numerically (for a detailed description of the algorithm 
see ref. 22). GRND is a Gaussian random number with standard deviation 
equal to unity. For the parameters m = 7.4 x 10-7 kg, 7 = 7 • 10-6 kg/sec, 
e = 2 x 10-8 Nm, C = 6.4 x 10-3, g = 9.81 m/sec 2, and At = 10-2 sec we find 
by means of (12) ncr=12,0OO/m. The given parameters have been deter- 
mined experimentallyJ ~sl During the simulation the density and the tem- 
perature were found by coarse graining in small boxes due to Eqs. (2). The 
box width is small with respect to the relaxation length LB. 

Figure 2 shows the velocity distributions 

w(v , t )=  P ( x , v , t ) d x  (14) 

of a stable (undercritical) and an unstable system. In the undercritical case 
we find a stable homogeneous flow with Gaussian velocity distribution, 
while in the latter case inhomogeneities due to random fluctuations 
increase with time and the velocity distribution w(v, t) is no longer 
Gaussian. In our opinion there are at least two distinct velocity distribu- 
tions in the system: at regions of low density we find high average grain 
velocity and at high-density regions the grains move with low average 
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Fig. 2. Velocity distribution found by simulations of a stable homogeneous system 
(n~  I 1,000/m < n  ~r) and an unstable system (n"=  14,000/177 > n  ~r) (solid lines). The dashed 
line shows the (normalized) sum of two Maxwellian distributions due to Eq. (4a) whose 
characteristics n, it, and T have been extracted from simulations. 
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Fig. 3. The particle density of the unstable system at times t = 4 and 500 sec. Since the initial 
(honaogeneous) density is overcritical, the inhomogeneities increase with time and eventually 
form stable clusters. The clusters can move up- or downwards and their number changes by 
fusion or separation. These processes are strictly stochastic, hence they cannot be described 
within the hydrodynamic approximation [ Eqs. (9)]. 
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velocity. Both regimes are sharply separated from each other and can be 
assigned separate sets of averaged density (n ~ n~ velocity (u'], v,~ and 
granular temperature (T ~ T~ respectively. The dashed line in Fig. 2 
shows the normalized superposition of two Gaussian distributions where 
the parameters n, u, and T come from simulations in the high-and low- 
density regimes. 

Figure 3 shows snapshots of the particle density of the unstable 
system. Starting at time t = 0 with a homogeneous distribution, after some 
time we eventually observe the formation of two moving clusters originat- 
ing from random inhomogeneities. Depending on the initial conditions, we 
find configurations with one or three moving clusters, too. In corre- 
spondence with experiments (~8"5) and MD simulations, c5~ we observed 
coexisting clusters moving either in positive or negative direction. 

Figure 4 shows snapshots of the particle velocities and granular tem- 
peratures which correspond to the lower part of Fig. 3. Note that the slope 
of both curves at the left-hand side of the density wave is very steep. Here 
the collision rate is very high due to the large velocity gradient between the 
particles which are involved in the clusters and the free-falling ones. The 
particle velocity at the right-hand side of the clusters is much lower. There 
the grain velocity slowly increases under the influence of gravity and hence 
the high density area, i.e., the cluster, dissolves (see also ref. 23). These pro- 
cesses lead to the hump shape of the clusters in Fig. 3. Contrary to the 
humplike solutions of the Burgers equation, (16) the widths of the clusters 

Fig. 4. 
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Snapshot of the velocity (top) and the mean square displacement of the velocity 
(granular temperature) (bottom) of the unstable system at time t = 500 sec. 
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remain invariant when they move through the pipe. The high negative 
velocity gradients at the front (left-hand side) of a cluster lead to an 
increase of the granular temperature (Fig. 4), whereas the small positive 
velocity gradient inside and at the back of the cluster results in a smaller 
granular temperature as compared with outside the clog. 

The simulation of the time-discretized Langevin equations (13) does 
not require time-consuming evaluation of forces as in the case of the full 
molecular dynamics (e.g., refs. 24 and 25). When numerically solving 
Eqs. (13) the only time-consuming part of the algorithm is the calculation 
of density, velocity, and temperature fields from the positions and velocities 
of the Brownian particles by coarse graining. For the calculation presented 
here we measured a speedup factor of about 80-90 of the presented method 
as compared with MD. 

We investigated the gravity-driven granular flow through a vertical 
narrow pipe using a simple model consisting of Brownian particles with 
collision interaction. We showed that there is a critical value for the 
particle density which decides whether initially homogeneous flow remains 
stable. The model is valid in the limit of pairwise particle interaction. This 
precondition is assumed to be fulfilled for the case of moderate particle 
density and low pipe width. Simulations of the discretized Langevin equa- 
tion for low and high density support the theoretical prediction. The 
numerical results for the spatial particle density, the average velocity, and 
the granular temperature agree with the hydrodynamic description. 
Although our model does not include the interaction of the grains with the 
air inside the pipe, in a very simple approximation one can assume that the 
fluctuation term in the Langevin equation accounts for this interaction, 
t o o .  
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